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Abstract

Can big data help overcome problems with making causal inferences from obser-
vational data? I use a large dataset of wholesale used car auctions to test whether
incidental truncation, a form of sample selection where the dependent variable is only
observed for a subset of observations, biases a hedonic pricing model for used cars. 1
estimate OLS and sample selection-corrected models to assess the extent of the sample
selection bias. I employ a novel approach that uses plausibly exogenous variation in the
ability of the auctioneers to identify a two-step sample-selection model. I find that, in
the base specification with no controls, there is a significant degree of sample selection
bias. However, adding progressively finer fixed effects (for make, model, body type,
and model year) attenuates and eventually eliminates the sample selection bias. This
example illustrates that big datasets with rich details can potentially help researchers

mitigate sample selection bias and make credible causal claims from observational data.



1 Introduction

I show how big data can potentially help overcome obstacles to making causal inferences
from observational data. Using a large dataset of wholesale used car auction results, I
explore whether incidental truncation biases a hedonic regression of auction sale price on
observable car characteristics such as age and odometer mileage. I find that the standard OLS
predictions converge to the bias-corrected predictions after controlling for detailed car-level
characteristics.

Empirical economists are often concerned with drawing causal claims from observational
data. An important impediment is that with “observational data, correlations are almost
certainly not reflecting a causal relationship because the variables are endogenously chosen.”?
Endogeneity and sample selection both threaten causal inference by biasing the estimated
effects from the observed data. Economists have developed a variety of techniques to overcome
these hurdles, including difference-in-differences models, instrumental variables, and regression
discontinuity designs; big data are another potentially useful tool for this purpose.

"2 provide

Big data, or data collected “as the byproduct of some other business activity,
an opportunity for economists to test their theories on very large, detailed datasets. However,
it is not obvious ex-ante that using these new, bigger datasets reduces the endogeneity and
sample selection problems that complicate causal inference from observational data. It is
conceivable that using larger datasets would instead provide more and more precise estimates
of the biased effects. For big data to be useful for researchers the data must provide more
information for each observation, not merely more observations.

Varian (2014) suggests that big data can be useful for identifying causal relationships by

better modeling “both the observed difference in outcome and the selection bias.”? Einav

!Cunningham (2018, p. 18)
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and Levin (2014) concur with this assessment, arguing that “the use of highly granular data
to find targeted variation that plausibly allows for causal estimates.”* In this paper I do just
that; I explore sample selection bias in a hedonic pricing model of used cars, using a large
and detailed dataset of wholesale used car auctions.

Used car auctions are an integral part the used car market in the U.S., which is substantially
larger than the new car market in terms of the number of vehicles sold. Over 15 million used
cars are sold at auction each year, which accounts for more than one third of the roughly
40 million used cars sold in 2017. Wholesale used car auctions provide liquidity to dealers
and the used car market as a whole. The number of used cars sold at auction each year is
roughly equivalent to the number of new car sales.’?

Just over 50% of the cars in my sample successfully sell at auction. Therefore, I only
observe the key dependent variable, the sale price, for half of the sample. The observation
of sale price itself depends on the outcome of another variable — whether or not the car
sells. This is a type of sample selection called incidental truncation.® If the auction outcomes
are randomly assigned, this is not problematic. However, whether or not the car sells at
auction is determined endogenously in the auction process. Incidental truncation can bias
the coefficient estimates in a hedonic regression of car characteristics on price because the
regression is run on a non-random subsample of the data.

I take advantage of a large, rich dataset of wholesale used car auctions to test my
hypotheses. The data consist of individual car characteristics (make, model, age, mileage)
and details of the auction environment, including unique auctioneer identifiers. The data
span five years and total 20 million unique auction observations. The data come from one of

the two main wholesale used car auction houses in the United States.
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I test whether the incidental truncation biases the coefficient estimates in a standard
OLS hedonic regression of price on the observable characteristics of the cars. 1 employ
a novel approach that uses variation in the ability of the auctioneers as the exclusion
restriction to identify a two step sample-selection model. T take advantage of the (conditional)
random assignment of cars to auctioneers, which creates plausibly exogenous variation in the
probability that a car sells at auction. I then compare sample selection-corrected model to
the the uncorrected OLS model to assess the extent of the sample selection bias.

I find that, in the base specification with no fixed effects, there is a significant degree of
sample selection bias. Failing to account for the unobserved correlation between whether
or not a car sells and the sale price biases the coefficient estimates. Strikingly, adding
progressively finer fixed effects (for make, model, body type, and model year) attenuates and
eventually eliminates the sample selection bias present in the baseline specification. In this
case, controlling for individual-level characteristics eliminates the practical consequences of
selection bias, which is consistent with Varian’s and Einav and Levin’s arguments that big
data can facilitate controlling for sample selection bias and drawing causal inference from
observational data.

The rest of the paper is organized as follows. In Section 2, I review the literature on used
cars, auctions, and wholesale used car auctions. In Section 3 I describe my theoretical model
and lay out my identification strategy in more detail. In Section 4 I describe the auction
environment and my data. In Section 5 I present and discuss my empirical results. I then

conclude.

2 Literature Review

Used car sales are a classic example of a market with information asymmetries. In his famous

paper “The Market for Lemons,” Akerlof (1970) argues that private information on the part



of the seller can unravel the market and prevent otherwise efficient exchanges. Buyers have
the incentive to misrepresent low-quality cars, or “lemons”, as high quality cars. This adverse
selection problem drives sellers of high-quality cars out of the market and leads buyers to
infer that used cars advertised as high quality are actually lemons. The auction house serves
as an intermediary in the used car market that helps overcome the adverse selection problem.
The auction house also provides ex-post arbitration if a buyer believes they have been misled.

There is a moderately-sized literature that tests auction theory and auction mechanics in
the wholesale used car auction environment. Most of these papers use hedonic pricing models
to test the impact of various factors, such as the auctioneer heterogeneity or information
disclosure, on auction outcomes. I add to this literature on wholesale auto auctions by
addressing potential sample selection bias resulting from the fact that a large fraction of cars
fail to successfully sell at auction.

Lacetera and Sydnor (2014) use similar wholesale used car auction data to evaluate the
impact of the country in which a car is manufactured on sale price. They find that for older
model years, cars manufactured in Japan sell at a small premium to observationally identical
cars built in the United States, but that the difference disappears after 2002.

Tadelis and Zettelmeyer (2015) show in an experimental setting that imperfect information
plays a key role in the wholesale used car market, and is an important friction preventing
cars from selling at auction. They perform a field experiment at a used car auction in which
they randomly disclose information about the car’s quality to bidders in some auctions.
Interestingly, information disclosure had a positive impact on the probability of sale for
all types of cars, regardless of whether they are in good or bad condition. Tadelis and
Zettelmeyer argue that this information signal allows bidders with heterogenous preferences
over cars to better sort on the type of car they wish to purchase at the auction.

Larsen (2018) explores the efficiency of the ex-post bargaining system employed when cars

do not sell at auction. He finds that incomplete information is not the only force that drives a



large portion of auctions to end with no exchange. His key finding is that “8-14% of feasible
trades (cases where the buyer indeed values the good more than the seller) fail.”” While a
portion of this inefficiency is due to incomplete information and adverse selection (as shown
by Tadelis and Zettelmeyer’s information disclosure experiment), some of the inefficiency is
driven by the auction and ex-post bargaining mechanisms themselves.

Lacetera et al. (2016) consider the effect of the auction environment, specifically the
auctioneer, on auction outcomes. They find that in the oral ascending auction used at the
wholesale used car auction, differences in auctioneer ability do have an important impact on
auction outcomes, specifically the “auctioneer’s conversion rate, defined as the fraction of
auctions that end in a sale.”® They find substantial variation in auctioneer ability, and that
ability has a substantive impact on auction outcomes. The authors conclude that “the most
successful auctioneers tend to be those who can best manipulate the pace of their auctions,
with faster paced auctions resulting in better conversion rates.”

Auctioneer’s are incentivized to maximize their conversion rate. The auctioneers are
independent contractors paid a flat daily wage, but “the auction house periodically uses
small bonus incentives tied to targets like the fraction of cars sold in a lane per day.”® Much
like a stock exchange, the auction house cares about maximizing the number of successful
transactions, rather than the sale price. The general manager of one of the auction houses
emphasized this when he wrote to the authors that “conversion rate pays the bills.” 10

The main threat to causal inference is that cars are not assigned randomly to different
auctioneers, so the auctioneer’s raw conversion rates, while correlated with their underlying
skill, do not perfectly reflect the auctioneer effect on the probability of sale. “Fleet/lease”

sellers (rental car companies, leasing companies, and corporate fleets) frequently bring their

"Larsen (2018, p. 5)
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own auctioneers and also set very low reserve prices, so a large fraction of their cars sell at
auction compared to those sold by car dealers.

Lacetera et al. restrict their sample to cars sold by other used car dealers, and argue
that cars are randomly assigned to auctioneers conditional on a variety of car and auction
environment specific factors. Their preferred specification controls for mileage as well as
seller, time-of-day, auction house, lane, and make, model, age, and body type fixed effects.
The auctioneer effects are substantial: “a one standard deviation increase in auctioneer
performance corresponds to an increase in the probability of sale of 2.3 percentage points
(about a 4.3 percent increase over an average conversion rate of 0.53)”11

Additionally, the auction company produces blue-book style price estimates based on
hedonic regressions, so sample selection bias could impact a relatively important part of their

business, as these blue book prices help auctioneers, buyers, and sellers set expectations

about a reasonable sale price.

3 Sample Selection Model

Figure 1 below illustrates visually the sample selection problem. In the figure, X are the
car-level characteristics: make, model, age, mileage, etc. There is a direct effect of the car
characteristics on the main outcome variable Y, the sale price. However, X also affects S, an
indicator variable for whether or not the car sells. If there is no relationship between S and
Y, then regressing Y on X will give the causal effect of the car characteristics on the sale
price.

However, if there are unobserved factors U that influence both the sale price and whether
or not the car sells, then regressing ¥ on X will produce a biased estimate of the effect of car

characteristics on price. If; as I have assumed in the diagram, there is a relationship between

HLacetera et al. (2016, p. 197)
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Figure 1: DAG Representation of Sample Selection Model'?

X and S (i.e. Cov(X,S) #0) as well as between S and Y, then omitting this from an OLS

regression would bias the estimate of 3, the true effect of X on Y, as seen in Equation 1.

Cov(X,95)

BIﬁerm (1)

In order to get a clean estimate of the effect of X on Y when there is unobserved correlation
between inclusion in the sample and the sale price, I need to identify some other factor A that
influences Y only through its influence on S. Figure 2 illustrates this requirement visually;
the key assumption is that there is no direct causal path from A to Y. Then, taking into

account the relationship between S and Y caused by changes in A, I can identify the effect

of XonVY.

Figure 2: Sample Selection with Exclusion Restriction



3.1 Heckman Sample Selection Model

Heckman (1979) introduced a statistical method to correct for the type of sample selection
bias illustrated in the diagrams above. A simple hedonic regression for the price of the

wholesale used cars is:

~

Where X is a vector of fixed effects dummies for make, model, model year, etc. Equation 2
can only be estimated if S = 1, when the car successfully sells at auction.
Heckman proposed a two-step procedure to correct for sample-selection bias. In the first

step, I estimate a probit regression on the likelihood of inclusion in the sample (i.e. S =1).

P(S =1); = ®(Z) (3)

Where i indexes individual cars and Z D X. There must be an additional regressor (A)
that affects the sale price only through its effect on probability of sale. This is the exclusion
restriction.

In the second stage, I estimate a linear regression on the subsample for which I observe

the dependent variable with the inverse Mills ratio, %, evaluated at Zv, the linear predictions
of the probit model, included as a covariate. The inverse Mills ratio is decreasing in the

probability of inclusion in the sample. The second stage regression is:

Vi = ay + Bi(Age) + Ba(Miles;) + Xi6 + pA(Z7) + u; (4)

If p, the coefficient of the inverse Mills ratio, is statistically different from zero, then there is
evidence of a sample selection problem, because there is a correlation between the probability

of inclusion in the sample and the regressors in the main model.



3.2 Semi-parametric Sample Selection Model

Newey et al. (1990) and Newey (2009) suggest a semi-parametric version of the Heckman
model that relaxes the assumption of joint normality of the error terms in the first and second
stage regressions. Instead, they propose a two-step estimator in which “a non-parametric
approximation to [the sample selection correction] is used in the second-step regression rather
than the inverse Mills ratio.”!® Newey (2009) suggests a polynomial or spline of the predicted
probabilities of sample inclusion as the non-parametric approximation to the inverse Mills

ratio.

3.3 Identification

As I discussed in greater detail above, Lacetera et al. (2016) find that that auctioneers are
not identical in their abilities, and that as a consequence some have higher conversion rates
than others. I argue that the (conditionally) random assignment of cars to auctioneers is a
plausible instrument for the probability of sale. That is, that there is an effect of auctioneer
ability on a car’s inclusion in the sample, but no direct effect of the auctioneer on the sale
price.

Lacetera et al. do not analyze the effect of auctioneer ability on sale price directly, but
instead consider the “residual price”, the difference between the sale price and the auction
house’s estimated blue-book price. They find a small positive effect of auctioneer ability
on residual price — $41.80 compared to the mean sale price in their sample of $15,141. In
percentage terms, this effect is an order of magnitude smaller than the auctioneer’s effect on
the probability of sale (0.28% compared to 4.3%).

I use two alternative measures of the auctioneer effects as instruments to identify the

model: the raw conversion rates calculated from the data and the auctioneer effects recovered

BNewey (2009, p. 219)



from a regression of car and auction characteristics on whether or not a car sells.
Yie = a+ Bk + Xiy + € (5)

Where 7 indexes individual cars and k indexes auctioneers. X is a vector of car characteristics
and auction environment fixed effects. The ;s are the auctioneer effects, the estimates of
interest. In Equation 5, I use Lacetera et al.’s preferred specification, which controls for
seller, day of the week, time of day, lane, make xmodel xagexbody, and mileage. Of the two
measures, | argue that the recovered fixed effects are a better exclusion restriction because

they are a cleaner estimate of auctioneers’ true influence on the probability of sale.

4 Auction Environment and Data Description

The entire dataset consists of 55 million observations across seven years, 2002-2008. 1 observe
rich details about each car that goes up for auction: make, model, model year, and body type
(e.g. 2000 Toyota Camry LE). I also observe important details about the auction environment
and auction results, including the auction date (which allows me to calculate the age of the
car when it is sold), auction location, the specific lane at the auction house in which it is run,
the unique auctioneer identifier, as well as the reserve price, the high bid, and the sale price.

Throughout my analysis, I will restrict my focus to dealer-sellers. The cars sold by
dealers are typically trade-ins that the dealer does not want to sell themselves. Another large
segment of the wholesale used car market are fleet/lease sellers: rental car companies, leasing
companies and corporate fleets. These sellers want to get the cars off their hands; they set
low reserve prices (or do not set them at all), and consequently sell almost all of their cars.

Additionally, fleet/lease sellers frequently bring their own auctioneers to the auction house.

10



I also drop the first two years of data, 2002 and 2003, because they are missing the unique
auctioneer identifiers. In addition, I drop outliers on the observable variables: cars that sell
for over $75,000 or less than $100, cars with over 250,000 miles, and cars that were over
25 years old when they sold. Additionally, I dropped trailers, boats, and other recreational
vehicles that weren’t consumer cars or trucks. After the data cleaning process about 20
million observations remain, spread across 5 years.

The auctions are oral, ascending-price auctions, or English auctions.'* On average, the
auctions last for about one minute. Each auction house conducts auctions multiple times
a week, and at each auction there are multiple lanes of cars. Bidders are free to wander
from lane to lane. Although I do not observe the number of bidders or the bid history in the
data, Genesove (1995) observes that there are typically between five and ten bidders at each

auction lane, and Lacetera et al. reaffirm this observation.

4.1 Summary Statistics

Table 1 displays summary statistics for my sample of used cars, broken down by whether
or not the cars successfully sell at auction. 51.8% of cars in my sample sell at auction.
The average sale price for cars that do sell is just over $8,000. The average car that goes
up for auction is about 5.5 years old and has around 80 thousand miles on the odometer.
Interestingly, cars that sell are, on average, slightly older and have more mileage than cars
that do not sell at auction, although there is significantly more variance in the age of cars
that do not sell at auction. The fact that cars that do sell tend to be older may reflect the

adverse selection problems described by Akerlof (1970).

14The English auction is strategically equivalent to a second-price sealed bid auction, where the good goes
to the bidder that values the item the most but the winner only pays the valuation of the second-highest
bidder
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Table 1: Summary Statistics by Sale Status

Unsold Sold Total
Share of Cars Sold - - 0.518
Sale Price 0 $8,284.15 $4,289.63
($7404.9) ($6747.4)
Age 5.28 6.01 5.66
(10.85)  (4.11) (8.10)
Miles 76.49 83.49 80.11
(Thousands) (46.77)  (47.18) (47.12)

Note: Standard deviations in parentheses

4.2 Auctioneer Cutoff

It is important to choose a cutoff value for auctioneers by the number of auctions they have
conducted. There is much higher variance in the conversion rate and estimated auctioneer
effects among auctioneers with a lower number of auctions conducted. Lacetera et al. choose
to restrict their sample to auctioneers who have conducted at least 5,000 auctions. I explore
different potential cutoff values and their effects on both the sample size and the distribution
of auctioneer effects and conversion rates. Table 2 reports the effect of different potential cutoff
values on the number of observations left in the sample. Figure 5 displays the distribution of
conversion rates at different cutoff values; as the cutoff increases, the mass points at 0 and
1 disappear and the conversion rates appear to be normally distributed around the mean
sample value. Figure 6 displays the correlation between the conversion rates and estimated
auctioneer effects; as the cutoff increases the correlation weakens as the auctioneers with
extreme values for either measure are dropped from the sample. I follow Lacetera et al. (2016)

and restrict my sample to auctioneers who have at least 5,000 auction observations.
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Table 2: Auctioneer Cutoffs

Cutoff CDF Value Observations Omitted Observations Left

0 0 0 19,989,986
100 8e-04 15,575 19,974,411
250 0.0024 47,414 19,942,572
500 0.0048 95,043 19,804,943
1000 0.0095 190,204 19,799,782
5000 0.0695 1,389,372 18,600,614

5 Results and Discussion

5.1 Estimation

Due to the size of the data and the high-dimensional fixed effects, I cannot feasibly estimate the
sample selection models using the full maximum-likelihood method. Instead, I implemented
both the parametric estimator presented in Heckman (1979) and the semi-parametric model
from Newey (2009) using the 1fe and bife packages in R. These packages implement pseudeo-
demeaning algorithms to estimate linear and binary response models with high-dimensional
fixed effects in a computationally efficient manner.!® This method is computationally feasible
and produces consistent point estimates and predicted values.

For each level of fixed effects, I estimated OLS, Heckman, and semi-parametric sample
selection hedonic regressions of the sale price of used cars on a quadratic of the car’s age and

a cubic of the car’s odometer mileage. I estimated the following OLS regression:

}Afi = Bo + B1(Age;) + 52(/19@?) + B3(Miles;) + 54(Mi563?) + 55(Mil€3?) + X6 +u;  (6)

Where Miles is the odometer mileage in 1000’s of miles, and X is the vector of fixed effects for

each specification. For the first stage of both the Heckman estimator and the semi-parametric

15Gaure (2013) and Stammann et al. (2016), respectively
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estimator, I estimate:

P(S =1); = ®(y0 + n(Age;) +72(Ages) +v3(Miles;) +va(Miles]) + vs(Miles;)

+ ’YG(Oék) + X0+ vy (7)

Where oy, are the auctioneer effects recovered from Equation 5.
In the second step of the Heckman model, I estimate the inverse Mills ratio (%) at the

linear predictions of the probit model, then estimate the following OLS regression:
Vi = Bo+B1(Age;) + B2 (Age?) + Bs(Miles; ) + Bo( Miles?) + Bs(Miles?) + Bg(\) + X 6 +u; (8)

For the second stage of the semi-parametric model, I estimate the following OLS regression:

Vi = o+ Bi(Age,) + Bal Aged) + Ba(Miles:) + Ba(Miles?) + B(Miles?)

+ poly(Z'%,3)n+ X'6 +u;  (9)

Where poly(Z'4,3) is a 3' degree orthogonal polynomial of the predictions from Equation 6,

the first stage regression.!®

5.2 Results

Table 3 presents the estimates from the baseline OLS regressions as well as the both of the
sample selection-corrected models. Model 1 has no fixed effects, Model 2 has make and model
fixed effects, Model 3 has make, model, and body type fixed effects, and Model 4 has make,
model, body type and model year fixed effects. Controlling for model year in addition to age

captures the fact that a five year old Toyota Camry sold in 2002 is not the same as a five

16T also tried higher-degree polynomials as well as polynomial splines as the non-parametric approximation
of the inverse Mills ratio, but the results were not substantively different.
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year old Toyota Camry sold in 2007. Adding finer degrees of fixed effects adds substantially
more explanatory power to the the model; the adjusted R? of Model 4 is 0.94, compared to
0.51 in the Model 1 with no fixed effects.

Table 5 in the Appendix presents the results from the first stage probit regressions for
all four models. As expected, the auctioneer effect has a consistently strong and positive
effect on the predicted probability of sample inclusion across all four models. For the first
model with no fixed effects, the average marginal effect of a standard deviation increase in
auctioneer ability is 4.12 percentage points; the average marginal effect of auctioneer ability
is 4.25 percentage points in Model 4 with the comprehensive fixed effects. The magnitude
and robustness of the effect suggest that auctioneer ability is a strong instrument. These
predictions closely match the results of Lacetera et al. (2016).

All of the models use robust standard errors clustered around the unit of fixed effects.
That is, the standard errors in Model 1 are not clustered, the standard errors in Model 2 are
clustered at the make-model level, and so on. Across all models, the coefficient estimates for
all of the age and miles terms are highly statistically significant, which is unsurprising given
the large number of observations in my dataset.

Substantively, the coefficient estimates suggest that both age and miles have negative
effects on the sale price, which makes intuitive sense. All else equal, people generally prefer
newer cars with less miles on them. The marginal effect of both age and miles on the sale
price are decreasing in the level of age and miles. Again, this agrees with my a priori
expectations; the difference between a eight-year-old car and a nine-year-old car is smaller
than the difference between and one-year-old car and a two-year-old car. This broad pattern
holds across all specifications, although the individual point estimates vary somewhat between
models.

My preferred specification is the semi-parametric sample selection model. As I described

in subsection 3.2, the semi-parametric estimator does not require the assumption of joint
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normality of the two error terms as in the Heckman model. Additionally, it allows the
correction term to enter the hedonic regression in a more flexible manner. This can be
seen from the marginal improvement in the adjusted R?> when comparing the Heckit and
semi-parametric estimates in for Model 1. For Models 2-4, the differences between the Heckit

and semi-parametric estimates are inconsequential.

5.3 Discussion

I used several different methods to assess whether or not there is sample selection bias in
each of the four models. The first and most straightforward test is to check whether the
coefficients on the selection correction are statistically different from zero.!” Each of the
models pass this test; \is highly statistically significant in all four of the Heckit models, and
the coefficients on the all of the polynomial terms are also highly significant. Additionally, in
each case a Wald test comparing the unrestricted (selection corrected) and restricted (OLS)
models also strongly rejects the null hypothesis that excluding the selection correction from
the model does not impact the explanatory power of the model. Both of these tests suggest
that there is evidence of sample selection bias in all four models.

However, the statistical significance of the correction term(s) and the Wald tests may be
more a reflection of the sample size than the true extent of the sample selection problem. In
Model 1, there are clearly substantive differences between the estimated coefficients for both
age and miles. However, in Models 2-4, the coefficient estimates between the OLS and both
sample selection models hardly differ at all.

Figure 3 plots the predicted effect of age on sale price for Model 1 and Model 4. There
is a substantial difference in the predictions between the OLS, Heckit, and semi-parametric

models for the first specification with no fixed effects, but the curves overlap almost perfectly

1"Wooldridge (2012)
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(a) Model 1 (b) Model 4
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Figure 3: Effect of Selection Bias on Age Coefficients

for the specification with the most controls. These plots illustrate visually how the sample
selection bias disappears after adding the fixed effects for car characteristics.

To assess the practical impact of the sample selection problem on the predictions of the
hedonic pricing model, I compared the predicted values of the OLS and semi-parametric
models for each of the four specifications using two measures: the correlation between the
predicted values of the two models, and the mean of the absolute value of the pairwise
differences of the predicted values. The correlation between the predicted values for the OLS
and semi-parametric sample selection models was very high across all specifications, but the
correlation coefficient increased as I included finer and finer fixed effects.

Equation 10 gives the formula for the mean absolute pairwise difference in predicted

values.

N

1 . .

N Z [JoLs; — Usp, (10)
=1

Where yors are the predicted values from the OLS model and gsp are the predicted values

form the semi-parametric model. The average difference in predicted values between the

OLS and semi-parametric estimations for Model 1 is more than $185. The average difference
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falls to about $10 for each of Models 2-4. Figure 4 plots the the statistic for each of the four

models.
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Figure 4: Mean Absolute Pairwise Difference of Predictions by Model

The average difference in predicted values of $185 is economically significant; it is about
2.25% of the mean sale price of cars in the sample. However, the substantive differences in
predicted values disappear when I add fixed effects for make and model, and then remain the
about same for the other specifications. This suggests that controlling for make and model
is sufficient to eliminate the practical consequences of the sample selection bias. However,
controlling for finer-degree fixed effects is still advisable if the goal is to maximize predictive

accuracy, as they continue to increase the adjusted R? of the model.

18



Table 3: OLS and Heckit Model Results’

Model 1 Model 2 Model 3 Model 4
OLS Heckit Semi-parametric OLS Heckit Semi-parametric OLS Heckit Semi-parametric OLS Heckit Semi-parametric

Age —1,326.419"* —1,531.749** —1,668.178"* —1,317.914"  —1,317.851*** —1,317.848** —1,359.115"**  —1,359.038*** —1,359.035** —1,622.897**  —1,622.681*** —1,622.660***

(1.471) (2.198) (2.391) (58.054) (58.053) (58.053) (37.555) (37.553) (37.553) (22.492) (22.489) (22.489)
Age? 33.577 41.307* 49.293*** 32,573 32.572% 32.572"+* 40.421 40.418"* 40.418*** 60.289*** 60.277* 60.276***

(0.070) (0.093) (0.108) (2.469) (2.469) (2.469) (1.529) (1.528) (1.528) (1.073) (1.073) (1.073)
Miles —155.351*** —148.597** —144.059*** —140.230*** —140.231** —140.231** —126.132*** —126.134** —126.134*** —115.420*** —115.415*** —115.413***

(0.304) (0.308) (0.311) (8.043) (8.043) (8.043) (3.833) (3.833) (3.833) (1.849) (1.849) (1.849)
Miles? 0.761*** 0.719* 0.693** 0.748*** 0.748* 0.748** 0.651*** 0.651** 0.651*** 0.551*** 0.551** 0.551***

(0.003) (0.003) (0.003) (0.068) (0.068) (0.068) (0.033) (0.033) (0.033) (0.016) (0.016) (0.016)
Miles® —0.001*** —0.001** —0.001** —0.001*** —0.001*** —0.001** —0.001** —0.001*** —0.001** —0.001** —0.001*** —0.001***

(0.00001) (0.00001) (0.00001) (0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.00004) (0.00004) (0.00004)
A —3,152.552*** —74.031* —70.406*** —73.036***
(25.081) (10.241) (5.408) (3.576)

poly(Z'4,3) v v v v
Constant 21,798.630"*  24,729.280*** 22,537.260"**

(7.534) (24.549) (8.840)
Fixed Effects None makexmodel makexmodelxbody makexmodelxbodyxmodel year
Observations 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894 9,594,894
Adjusted R? 0.512 0.513 0.514 0.867 0.867 0.867 0.919 0.919 0.919 0.941 0.941 0.941
Note: Clustered standard errors in parentheses *p<0.1; *p<0.05; **p<0.01

fModels 2-4 do not report a constant because it is lost in the fixed-effects demeaning algorithm.
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6 Conclusion

In this paper, I explore the extent of sample selection bias in the wholesale used auto market,
as well as the larger implications for the ability for researchers to use big data to overcome
sample selection bias. Using a dataset of about 20 million unique wholesale used car auctions
across five years, I build a hedonic pricing model that predicts the sale price of used cars as
a function of observable characteristics: age, mileage, make, model, and body type. I test
whether the incidental truncation of the dependent variable, sale price, biases the coefficient
estimates of the hedonic pricing model.

I use a two step sample-selection model to correct for the incidental truncation of the
dependent variable. I identify a plausible exclusion restriction: the ability or skill of the
auctioneer to which the car is randomly assigned at auction. In the baseline model with no
fixed effects, I find evidence for substantial sample selection bias. On average, the predictions
of the naive model differ from the sample selection-corrected model by $185; this difference is
small but economically meaningful compared to the average sale price of just over $8,000

Adding finer fixed effects to the model eliminates the practical effects of the sample
selection bias, even while statistical tests strongly reject the null hypothesis that there is no
sample selection bias, which is likely a consequence of the large sample size. In the model
with the largest set of controls, the average difference in predicted prices is just $10.

My results suggest that controlling for sufficiently fine-grained fixed effects can eliminate
the practical consequences of unobserved correlation between a car’s probability of sale and
its sale price; the naive model performs just as well as the bias corrected model, without the
need to identify a plausible exclusion restriction. However, it is impossible to know whether
you have a problem with sample selection if you do not have a valid instrument, so in practice
the best course of action is to control for as many factors as possible. While not a replacement

for lab or field experiments, big datasets that allow researchers to control for fine details can
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potentially provide researchers with another useful tool for eliminating sample selection bias

from analyses of observational data.

21



References

Akerlof, G. A. (1970). The Market for ”Lemons”: Quality Uncertainty and the Market
Mechanism. Quarterly Journal of Economics 84(3), 488-500.

Cox Automotive (2018). Cox Automotive 2018 Used Car Market Report & Outlook. Technical

report, Cox Automotive.

Cunningham, S. (2018). Causal Inference: The Miztape (1.7 ed.). http://scunning. com/

cunningham_mixtape.pdf.
Einav, L. and J. Levin (2014). Economics in the age of big data. Science 346(6210), 1243089.

Gaure, S. (2013). OLS with multiple high dimensional category variables. Computational
Statistics € Data Analysis 66, 8-18.

Genesove, D. (1995). Search at wholesale auto auctions. The Quarterly Journal of Eco-

nomics 110(1), 23-49.

Heckman, J. J. (1979). Sample Selection Bias as a Specification Error. Econometrica 47(1),
153-161.

Lacetera, N., B. J. Larsen, D. G. Pope, and J. R. Sydnor (2016). Bid Takers or Market
Makers? The Effect of Auctioneers on Auction Outcome. American Economic Journal:

Microeconomics 8(4), 195-229.

Lacetera, N. and J. Sydnor (2014). Would You Buy a Honda Made in the United States?
The Impact of Production Location on Manufacturing Quality. The Review of Economics

and Statistics 97(4), 855-876.

Larsen, B. (2018). The Efficiency of Real-World Bargaining: Evidence from Wholesale
Used-Auto Auctions. NBER Working Paper, 1-83.

22


http://scunning.com/cunningham_mixtape.pdf
http://scunning.com/cunningham_mixtape.pdf

Newey, W. K. (2009). Two-step series estimation of sample selection models. The Econometrics

Journal 12(S1), S217-S229.

Newey, W. K., J. L. Powell, and J. R. Walker (1990). Semiparametric Estimation of Selection

Models: Some Empirical Results. The American Economic Review 80(2), 324-328.

Stammann, A., F. Heiss, and D. McFadden (2016). Estimating Fixed Effects Logit Models
with Large Panel Data. Kiel und Hamburg: ZBW - Deutsche Zentralbibliothek fiir

Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft.

Tadelis, S. and F. Zettelmeyer (2015). Information Disclosure as a Matching Mechanism:
Theory and Evidence from a Field Experiment. American Economic Review 105(2),

886-905.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspec-

tives 28(2), 3-28.

Wooldridge, J. M. (2012). Introductory Econometrics (5" ed.). South-Western.

23



Image Appendix
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Figure 5: Distribution of Conversion Rates by Auctioneer Cutoff
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Figure 6: Correlation between Conversion Rate and Auctioneer Effect by Auctioneer Cutoff
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Table Appendix

Table 4: Baseline OLS Regression Results

Model 1 Model 2 Model 3 Model 4
Age —1,218.045***  —1,281.933*** —1,305.374*** —1,621.759***
(1.266) (54.287) (36.831) (22.463)
Age? 27.532%** 30.377** 36.902*** 60.166***
(0.055) (2.030) (1.510) (1.069)
Miles —162.353*** —142.472%* —129.225%** —115.420***
(0.300) (7.824) (3.952) (1.851)
Miles? 0.793*** 0.761*** 0.672*** 0.551***
(0.003) (0.066) (0.034) (0.016)
Miles? —0.001*** —0.001** —0.001*** —0.001**
(0.00001) (0.0002) (0.0001) (0.00004)
Constant 21,777.620%*
(7.544)
Fixed Effects None makexmodel  makexmodelxbody makexmodelxbodyxmodel year
Observations 9,616,977 9,616,977 9,616,977 9,616,977
Adjusted R? 0.510 0.867 0.918 0.941

Note:
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Table 5: First Stage Probit Regression Results

Model 1 Model 2 Model 3 Model 4
Age 0.099** 0.120** 0.138** 0.118"
(0.0003) (0.0003) (0.0004) (0.0006)
Age? —0.004*** —0.0045** —0.005** —0.004***
(0.00001) (0.00002) (0.00002) (0.00004)
Miles —0.003*** —0.004*** —0.005"* —0.006***
(0.0001) (0.00006) (0.00006) (0.00006)
Miles? 0.00002*** 0.00002*** 0.00003*** 0.00003***
(0.00000) (0.00000) (0.00000) (0.00000)
Miles? —0.00000*** —0.00000%** —0.00000*** —0.00000***
(0.000) (0.000) (0.000) (0.000)
Auctioneer Effect 1.678* 1.666*** 1.649* 1.776™*
(0.005) (0.005) (0.005) (0.005)
Fixed Effects None makexmodel makexmodelxbody  makexmodelxbodyxmodel year
Observations 18,526,965 18,526,965 18,526,965 18,526,965
Note: *p<0.1; *p<0.05; **p<0.01
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